Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS
نویسندگان
چکیده
منابع مشابه
ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis.
Pseudomonas aeruginosa exoenzyme S (ExoS) is an ADP-ribosyltransferase that modifies low-molecular-weight GTPases. Here we studied the effect of Rab5 ADP-ribosylation by ExoS on its cellular function, i.e., regulation of early endocytic events. Coculture of CHO cells with P. aeruginosa induced a marked decrease in horseradish peroxidase (HRP) uptake compared to noninfected cells, while cocultur...
متن کاملMembrane localization contributes to the in vivo ADP-ribosylation of Ras by Pseudomonas aeruginosa ExoS.
Type III-delivered exoenzyme S (ExoS) preferentially ADP-ribosylated membrane-associated His(6)HRas, relative to its cytosolic derivative His(6)HRas Delta CAAX. This indicates that the subcellular protein distribution contributes to in vivo ADP-ribosylation by ExoS.
متن کاملThe ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia
UNLABELLED Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to severe disease and worse clinical outcomes in animal and human studies. The majority of P....
متن کاملADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S.
Pseudomonas aeruginosa exoenzyme S ADP-ribosylates p21ras and several related proteins. ADP-ribosylation of p21ras does not alter interactions with guanine nucleotides. The ras-related GTP-binding proteins, including Rab3, Rab4, Ral, Rap1A, and Rap2, are also substrates; given these results, we propose a model for the role of exoenzyme S in pathogenesis.
متن کاملPseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils.
Neutrophils are the first line of defense against bacterial infections, and the generation of reactive oxygen species is a key part of their arsenal. Pathogens use detoxification systems to avoid the bactericidal effects of reactive oxygen species. Here we demonstrate that the Gram-negative pathogen Pseudomonas aeruginosa is susceptible to reactive oxygen species but actively blocks the reactiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2002
ISSN: 0021-9258
DOI: 10.1074/jbc.m109039200